I use Stm32f103c8t6 processor and I want to make 1 second counter. Normaly I dont use tımer update ınterrupt and my counter counts correctly but when I add timer update ınterrupt in code my counter doesnt count correctly. So fast increment. And ı cant remove update interrupt flag (UIF) in TIM1's SR register. If I remove this flag my code is entering infinty loop. I cant any solution for this problem. Thanks for help
This part is bring in startup_stm32f10x_md.s
/**
* @brief This is the code that gets called when the processor receives an
* unexpected interrupt. This simply enters an infinite loop, preserving
* the system state for examination by a debugger.
*
* @param None
* @retval : None
*/
.section .text.Default_Handler,"ax",%progbits
Default_Handler:
Infinite_Loop:
b Infinite_Loop -----------------------------> my code is stuck here
.size Default_Handler, .-Default_Handler
And this is a my code.
#include <stddef.h>
#include "stm32f10x.h"
void CLK_Config(){
RCC-> CR = 0x00000000; //CR Reset
RCC-> CR |= 0x00010000; //HSE enable
while(!(RCC-> CR & 0x00020000)); //HSE FLAG control
RCC-> CR |= 0x00080000; //CSS enable
RCC-> CR |= 0x01000000; //PLL On
RCC-> CFGR |= 0x00010000; //HSE Select PLL input
RCC-> CFGR |= 0x001C0000; //PLL Multi With 9 = 72 Mhz
RCC-> CFGR |= 0x00000002; //PLL Select as SYSCLK
RCC-> CFGR |= 0x00000400; //APB1 Clock divided by 2
RCC-> APB1ENR |= 0x18000000; //APB1 BKP Clock Enable
PWR-> CR |= 0x0100; //PWR BKP Access Enable
RCC-> APB2ENR |= 0x00000001; //APB2 AFIO Clock Enable
}
void TIM1_Config(){
RCC-> APB2ENR |= 0x00000800; //TIM1 CLK Enable
TIM1-> CR1 |= 0x0085; //Update Request Source, Counter Enable
TIM1-> DIER = 0x0001; //Update Interrupt Enable
TIM1-> ARR = 0x1F40; //8000 is set as Auto Reload Value
TIM1-> PSC = 0x2327; //9000 is set as Prescaler Value for 1 sn Formula: 1sn=1Hz=(PCLK/(PSC*ARR))
}
void USART1_Config(){
RCC-> APB2ENR |= 0x00000004; //GPIOA CLK Enable
GPIOA-> CRH |= 0x00000AA0; //GPIOA 10,9 Push-Pull Alternate Function 2Mhz
RCC-> APB2ENR |= 0x00004000; //USART1 CLK Enable
USART1-> BRR |= 0x00001D4C; //USART1 Baund Rate 9600
USART1-> CR1 |= 0x000020C8; //USART, TXE Interrupt, TC Interrupt, Transmitter Enable
}
void Interrupt_Config(){
NVIC-> ISER[0] |= 0x02000000; //NVIC TIM1 UP
NVIC-> ISER[1] |= 0x00000020; //NVIC USART1 Global Interrupt
NVIC-> IP[25] = 0x10; //TIM1 UP Interrupt Priority 2. 25th Interrupt
NVIC-> IP[37] = 0x40; //USART1 Global Interrupt Priority 5. 37th Interrupt
}
uint8_t count1sec; // Global variable
int main(void)
{
CLK_Config();
Interrupt_Config();
TIM1_Config();
USART1_Config();
while (1)
{
if(count1sec != 0){
USART1-> DR = count1sec;
}
}
}
void TIM1_UP_IRQHandler(){
TIM1-> SR = 0x00000000;
NVIC-> ICPR[0] = 0x02000000;
count1sec += 1;
}
I'm not able to detect the exact cause of your problem, but I can provide some suggestions and make some guesses.
1) Do not use magic numbers! Use predefined bit names. Here is an example:
USART2->BRR = 0x1a0; // 115200 bps @ 24 MHz (OVER8=1, ONEBIT=1)
USART2->CR1 |= USART_CR1_OVER8 // Oversampling is reduced for higher baud rates
| USART_CR1_IDLEIE // Idle line detection interrupt is enabled
| USART_CR1_TE // Transmitter is enabled
| USART_CR1_RE; // Receiver is enabled
USART2->CR3 |= USART_CR3_ONEBIT // One bit mode for increased clock deviation tolerance
| USART_CR3_DMAT // DMA for TX
| USART_CR3_DMAR; // DMA for RX
USART2->CR1 |= USART_CR1_UE; // Enable USART2
2) Use CMSIS functions to access NVIC functionality. Here is an example:
NVIC_SetPriority(TIM6_DAC_IRQn, 2);
NVIC_EnableIRQ(TIM6_DAC_IRQn);
3) You have Auto-reload preload enable
bit set in TIM1->CR1
register. This normally delays the update of the ARR
register until the next update event. I'm not sure how it works during the initial run of the timer, but I suggest to avoid using it until you're sure everything works fine.
4) You normally don't need to clear pending bits in NVIC. I suggest removing that code from the ISR. Clearing the flags in the peripheral registers is all you need and you're already doing it with TIM1->SR = 0
line.
5) The reason you stuck in Infinite_Loop
is probably the USART TX interrupt. It gets fired but as you didn't supply a ISR for it, it falls into the Default_Handler
. You load DR manually in the main loop, so in this case you don't even need USART TX interrupts.
User contributions licensed under CC BY-SA 3.0