As an exercise I have to write the following function:
multiply x by 2, saturating to Tmin / Tmax if overflow, using only bit-wise and bit-shift operations.
Now this is my code:  
// xor MSB and 2nd MSB. if diferent, we have an overflow and SHOULD get 0xFFFFFFFF. otherwise we get 0.
int overflowmask = ((x & 0x80000000) ^ ((x & 0x40000000)<<1)) >>31;
                                                             // ^ this arithmetic bit shift seems to be wrong
// this gets you Tmin if x < 0 or Tmax if x >= 0
int overflowreplace = ((x>>31)^0x7FFFFFFF);
// if overflow, return x*2, otherwise overflowreplace
return ((x<<1) & ~overflowmask)|(overflowreplace & overflowmask);
now when overflowmask should be 0xFFFFFFFF, it is 1 instead, which means that the arithmetic bit shift >>31 shifted in 0s instead of 1s (MSB got XORed to 1, then shifted to the bottom).
x is signed and the MSB is 1, so according to C99 an arithmetic right shift should fill in 1s. What am I missing?
EDIT: I just guessed that this code isn't correct. To detect an overflow it suffices for the 2nd MSB to be 1.
However, I still wonder why the bit shift filled in 0s.
EDIT:
Example: x = 0xA0000000  
x & 0x80000000 = 0x80000000 
x & 0x40000000 = 0 
XOR => 0x80000000 
>>31 => 0x00000001
EDIT:
Solution:  
int msb = x & 0x80000000;
int msb2 = (x & 0x40000000) <<1;
int overflowmask = (msb2 | (msb^msb2)) >>31;
int overflowreplace = (x >>31) ^ 0x7FFFFFFF;
return ((x<<1) & ~overflowmask) | (overflowreplace & overflowmask);
Even on twos-complement machines, the behaviour of right-shift (>>) on negative operands is implementation-defined.
A safer approach is to work with unsigned types and explicitly OR-in the MSB.
While you're at it, you probably also want to use fixed-width types (e.g. uint32_t) rather than failing on platforms that don't meet your expectations.
 Toby Speight
 Toby Speight0x80000000 is treated as an unsigned number which causes everything to be converted to unsigned, You can do this:
// xor MSB and 2nd MSB. if diferent, we have an overflow and SHOULD get 0xFFFFFFFF. otherwise we get 0.
int overflowmask = ((x & (0x40000000 << 1)) ^ ((x & 0x40000000)<<1)) >>31;
// this gets you Tmin if x < 0 or Tmax if x >= 0
int overflowreplace = ((x>>31)^0x7FFFFFFF);
// if overflow, return x*2, otherwise overflowreplace
return ((x<<1) & ~overflowmask)|(overflowreplace & overflowmask);
OR write the constants in negative decimals
OR I would store all the constants in const int variables to have them guaranteed signed.
Never use bit-wise operands on signed types. In case of right shift on signed integers, it is up to the compiler if you get an arithmetic or a logical shift.
That's only one of your problems though. When you use a hex integer constant 0x80000000, it is actually of type unsigned int as explained here. This accidentally turns your whole expression (x & 0x80000000) ^ ... into unsigned type because of the integer promotion rule known as "the usual arithmetic conversions". Whereas the 0x40000000 expression is signed int and works as (the specific compiler) expected.
Solution:
uint32_t.u suffixed.(x >> n) | (0xFFFFFFFFu << (32-n)) or some similar hack. Lundin
 LundinUser contributions licensed under CC BY-SA 3.0