I've set "ulimit -c unlimited" on my Fedora system so segfaults generate core dump files. This is working.
I've seen an NT_FILE note mentioned at these URLs:
But my core files only contain these notes:
$ readelf --notes core.simple.11
Notes at offset 0x000003f8 with length 0x00000558:
Owner Data size Description
CORE 0x00000150 NT_PRSTATUS (prstatus structure)
CORE 0x00000088 NT_PRPSINFO (prpsinfo structure)
CORE 0x00000130 NT_AUXV (auxiliary vector)
CORE 0x00000200 NT_FPREGSET (floating point registers)
Why is there no NT_FILE note? How can I figure out the various object files the core file may be based on, and more importantly, the virtual addresses where those files were mapped into the core image?
Without the address mapping information from the NT_FILE note, I don't know how I can perform code address lookups in the DWARF debugging info from the object files.
Program headers in the core file:
$ readelf --segments core.simple.11
Elf file type is CORE (Core file)
Entry point 0x0
There are 17 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
NOTE 0x00000000000003f8 0x0000000000000000 0x0000000000000000
0x0000000000000558 0x0000000000000000 0
LOAD 0x0000000000001000 0x0000000000400000 0x0000000000000000
0x0000000000001000 0x0000000000001000 R E 1000
LOAD 0x0000000000002000 0x0000000000600000 0x0000000000000000
0x0000000000001000 0x0000000000001000 RW 1000
LOAD 0x0000000000003000 0x00000035fe800000 0x0000000000000000
0x0000000000001000 0x000000000001e000 R E 1000
LOAD 0x0000000000004000 0x00000035fea1d000 0x0000000000000000
0x0000000000001000 0x0000000000001000 R 1000
LOAD 0x0000000000005000 0x00000035fea1e000 0x0000000000000000
0x0000000000001000 0x0000000000001000 RW 1000
LOAD 0x0000000000006000 0x00000035fea1f000 0x0000000000000000
0x0000000000001000 0x0000000000001000 RW 1000
LOAD 0x0000000000007000 0x00000035fec00000 0x0000000000000000
0x0000000000001000 0x0000000000173000 R E 1000
LOAD 0x0000000000008000 0x00000035fed73000 0x0000000000000000
0x0000000000000000 0x00000000001ff000 1000
LOAD 0x0000000000008000 0x00000035fef72000 0x0000000000000000
0x0000000000004000 0x0000000000004000 R 1000
LOAD 0x000000000000c000 0x00000035fef76000 0x0000000000000000
0x0000000000001000 0x0000000000001000 RW 1000
LOAD 0x000000000000d000 0x00000035fef77000 0x0000000000000000
0x0000000000005000 0x0000000000005000 RW 1000
LOAD 0x0000000000012000 0x00007fc22db59000 0x0000000000000000
0x0000000000003000 0x0000000000003000 RW 1000
LOAD 0x0000000000015000 0x00007fc22db6c000 0x0000000000000000
0x0000000000001000 0x0000000000001000 RW 1000
LOAD 0x0000000000016000 0x00007fff81c40000 0x0000000000000000
0x0000000000016000 0x0000000000016000 RW 1000
LOAD 0x000000000002c000 0x00007fff81dee000 0x0000000000000000
0x0000000000001000 0x0000000000001000 R E 1000
LOAD 0x000000000002d000 0xffffffffff600000 0x0000000000000000
0x0000000000000000 0x0000000000001000 R E 1000
Program headers in the executable file:
$ readelf --segments simple
Elf file type is EXEC (Executable file)
Entry point 0x400390
There are 8 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040
0x00000000000001c0 0x00000000000001c0 R E 8
INTERP 0x0000000000000200 0x0000000000400200 0x0000000000400200
0x000000000000001c 0x000000000000001c R 1
[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x0000000000000674 0x0000000000000674 R E 200000
LOAD 0x0000000000000678 0x0000000000600678 0x0000000000600678
0x00000000000001e4 0x00000000000001f8 RW 200000
DYNAMIC 0x00000000000006a0 0x00000000006006a0 0x00000000006006a0
0x0000000000000190 0x0000000000000190 RW 8
NOTE 0x000000000000021c 0x000000000040021c 0x000000000040021c
0x0000000000000044 0x0000000000000044 R 4
GNU_EH_FRAME 0x00000000000005a8 0x00000000004005a8 0x00000000004005a8
0x000000000000002c 0x000000000000002c R 4
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 8
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
04 .dynamic
05 .note.ABI-tag .note.gnu.build-id
06 .eh_frame_hdr
07
My Linux version:
$ uname -a
Linux somehost 2.6.32.23-170.fc12.x86_64 #1 SMP Mon Sep 27 17:23:59 UTC 2010 x86_64 x86_64 x86_64 GNU/Linux
Why is there no NT_FILE note?
As noted by Mark Plotnick, it's a fairly recent kernel addition.
In no way is NT_FILE
note required for GDB (in fact, current GDB doesn't appear to use NT_FILE
at all, except when writing a core file with gcore
command).
How can I figure out the various object files the core file may be based on, and more importantly, the virtual addresses where those files were mapped into the core image?
The way this works for GDB is to look at PT_DYNAMIC
for the main executable in the core
, extract DT_DEBUG
from that, which then gives it a pointer to _r_debug
, which includes a linked list r_map
of struct link_map
, with each node in the list describing a loaded ELF file.
The (gdb) info shared
command will show you the decoded version of above info, but you need to provide matching binaries: the core
alone does not contain sufficient info.
Now, your question isn't very clear and could be understood several different ways.
It could be: "I have a core, which application crashed?" Use file core
and hope that the first 16 characters of pathname are sufficient. If that isn't sufficient, running strings core
will often reveal which application produced it. You should also consider setting /proc/sys/kernel/core_pattern
to something that includes %e
or %E
, so the question is trivial to answer in the future.
It could be: "I have several versions of application foo
, and want to know which version of foo
produced this particular core". In that case, you should be linking foo
with -Wl,--build-id
linker flag. That flag creates NT_GNU_BUILD_ID
note in the foo
binary. That note survives strip
, and is saved inside the core file as well. You can then run eu-unstrip -n --core /path/to/core
, and that will produce output like this:
eu-unstrip -n --core core
0x400000+0x208000 c266a51e4b85b16ca17bff8328f3abeafb577b29@0x400284 - - [exe]
0x7ffe3f7d9000+0x1000 7f14688f101a2ace5cad23dfbfbc918616651576@0x7ffe3f7d9340 . - linux-vdso.so.1
0x7fb5b6ec3000+0x2241c8 d0f537904076d73f29e4a37341f8a449e2ef6cd0@0x7fb5b6ec31d8 /lib64/ld-linux-x86-64.so.2 /usr/lib/debug/lib/x86_64-linux-gnu/ld-2.19.so ld-linux-x86-64.so.2
0x7fb5b6afe000+0x3c42c0 cf699a15caae64f50311fc4655b86dc39a479789@0x7fb5b6afe280 /lib/x86_64-linux-gnu/libc.so.6 /usr/lib/debug/lib/x86_64-linux-gnu/libc-2.19.so libc.so.6
From above output, you can know both exactly which ELF binaries were used, and where in memory they were loaded.
P.S. I just tried dumping a core from a.out
built with -Wl,--build-id=none
, and the resulting eu-unstrip
output is still quite useful:
eu-unstrip -n --core core
0x400000+0x202000 - - - [exe]
0x7fff5e1a0000+0x1000 7f14688f101a2ace5cad23dfbfbc918616651576@0x7fff5e1a0340 . - linux-vdso.so.1
0x7fbda432d000+0x2241c8 d0f537904076d73f29e4a37341f8a449e2ef6cd0@0x7fbda432d1d8 /lib64/ld-linux-x86-64.so.2 /usr/lib/debug/lib/x86_64-linux-gnu/ld-2.19.so ld-linux-x86-64.so.2
0x7fbda3f68000+0x3c42c0 cf699a15caae64f50311fc4655b86dc39a479789@0x7fbda3f68280 /lib/x86_64-linux-gnu/libc.so.6 /usr/lib/debug/lib/x86_64-linux-gnu/libc-2.19.so libc.so.6
Update:
There is no PT_DYNAMIC program header in my core file itself,
No, but PT_DYNAMIC
is a writable segment @0x6006a0
. That segment is actually written to (by the dynamic loader), and thus is always saved in the core
(as other modified data).
In your case, the contents is in the PT_LOAD
segment @0x600000
(i.e. the segment at file offset 0x2000
in the core
).
User contributions licensed under CC BY-SA 3.0