I solved a problem of concurrency that simulates a manufacturing cell products. I use 13 unnamed semaphores , which are handled by 8 threads running the "parts" of the problem.
The execution cycle measurement "t1 " is performed after phtread_create
, and " t2" is performed after pthread_join
, thus get the time worked the pthreads ( which is the value that interests me ) . Subtraction of t2 -t1 gives the execution time of the threads that are over.
I noticed that the range of values obtained is too broad , and I have measured values close to 30,000 cycles. And a value of 146 million cycles.
To measure cicles I use a driver " cicle_count " in which it reads the registry value R15 of Dual -core processor ARM Cortex A9, this register counts the number of instructions executed . The embedded system I use is the " ZedBoard " :
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400.1028&Prod=ZEDBOARD
I made measurements with 2-threads problems, simpler and get similar values between each measurement.
What am I doing wrong? can change both the measurement of execution time between each run of the program?
Edit 2: codes whit measurement dual and monocore.
For dual core execution (run. / Aplicacion.out):
I created two identical drivers (same code written, except the name of the device "DEVICE_NAME") but one is called "contador_ciclos1" and the other is called "contador_ciclos2" (it's okay that the two drivers are the same??)
these drivers are inserted one on each core with a script:
insmod hpn_driver.ko
-> Taskset 1 insmod contador_ciclos1.ko
-> Taskset 2 insmod contador_ciclos2.ko
mknod / dev / hpn_driver c 251 0
-> Mknod / dev/contador_ciclos1 c 250 0
-> Mknod / dev/contador_ciclos2 c 249 0
then, in the application I open the two drivers with two file descriptors, and take relevant measurements whit t2-t1 (core1) and t4-t3 (core2).
To monocore execution, insert the two drivers, but only open a driver and run taskset 1 to measure clock cycles on the driver "contador_ciclos1". And olny check to t2-t1 cicles.
this is a pseudo-code of the applicacion:
int i = 0;
char buff[24];
volatile unsigned int tiempo1, tiempo2;
tiempo1 = 0;
tiempo2 = 0;
volatile unsigned int overhead = 0;
int fd1, fd2 = 0;
fd1 = open("/dev/contador_ciclos1", O_RDWR | O_NOCTTY | O_NONBLOCK);
fd2 = open("/dev/contador_ciclos2", O_RDWR | O_NOCTTY | O_NONBLOCK);
iret1 = pthread_create( &thread1, NULL , hilo1_funcion, (void*) mensaje1);
if (iret1!=0){
printf("Fallo en creacion hilo 1 %d\n", iret1);
}
//create 8 Pthreads...
//measurement "t1" from core 1 and "t3" from core 2:
for(i=0;i<10;i++){
read (fd1,buff,11);
sscanf(buff,"%u",&tiempo1);
}
for(i=0;i<10;i++){
read (fd2,buff,11);
sscanf(buff,"%u",&tiempo3);
}
pthread_join( thread1, NULL);
pthread_join( thread2, NULL);
//measurement "t2" from core 1 and t4 from core 2:
read (fd1,buff,11);
sscanf(buff,"%u",&tiempo2);
read (fd2,buff,11);
sscanf(buff,"%u",&tiempo4);
printf(COLOR_VERDE"Ciclos_ejecucion_core1: %u"COLOR_RESET "\n", (tiempo2 - tiempo1));
printf(COLOR_VERDE"Ciclos_ejecucion_core2: %u"COLOR_RESET "\n", (tiempo4 - tiempo3));
This is the code of "phtread 1" that use the semaphores...
void *hilo1_funcion( void *ptr ){
//~ printf(COLOR_MAGENTA"HILO 1"COLOR_RESET"\n");
int fabricados3=0;
int rc=0;
/* Mientras que no se hayan finalizado de fabricar todos los productos 3,
* el robot 1 funciona */
while (fabricados3<productos3){
rc = sem_trywait(&P3M3);
if (rc==-1 && errno == EAGAIN) { /* no teller available */
//~ printf("ROBOT 1 semaforo P3M3 ocupado"COLOR_RESET"\n");
}
if (rc==0){
fabricados3++;
//~ printf(COLOR_CYAN" PRODUCTO TIPO 3 FINALIZADO - Cantidad de productos tipo 3 fabricados: %d"COLOR_RESET"\n", fabricados3);
sem_post(&P3R1);
}
//~ printf("YIELD ROBOT 1\n");
pthread_yield();
}
printf(COLOR_ROJO"FIN ROBOT 1"COLOR_RESET"\n");
pthread_exit(NULL);
return NULL;
}
This is a pseudo code of the driver "contador_ciclos1.ko", the same at contador_ciclos2.ko (
static inline void init_perfcounters (int do_reset, int enable_divider)
{
// in general enable all counters (including cycle counter)
static int value = 1;
// peform reset:
if (do_reset)
{
value |= 2; // reset all counters to zero.
value |= 4; // reset cycle counter to zero.
}
if (enable_divider)
value |= 8; // enable "by 64" divider for CCNT.
value |= 16;
// program the performance-counter control-register:
asm volatile ("MCR p15, 0, %0, c9, c12, 0\t\n" :: "r"(value));
// enable all counters:
asm volatile ("MCR p15, 0, %0, c9, c12, 1\t\n" :: "r"(0x8000000f));
// clear overflows:
asm volatile ("MCR p15, 0, %0, c9, c12, 3\t\n" :: "r"(0x8000000f));
}
static inline unsigned int get_cyclecount (void)
{
volatile unsigned int value;
asm volatile ("MRC p15, 0, %0, c9, c13, 0\t\n": "=r"(value));
return value;
}
int init_module(void)
{
init_perfcounters(1,0);
Major = register_chrdev(0, DEVICE_NAME, &fops);
}
static ssize_t device_read(struct file *filp,
char *buffer,
size_t length,
loff_t * offset)
{
volatile unsigned int counter;
long bytes_read;
char msg[BUF_LEN];
counter = get_cyclecount();
sprintf(msg, "%u", counter);
bytes_read = copy_to_user(buffer,msg,12);
if (bytes_read) printk(KERN_ALERT "error en contador.\n");
return bytes_read;
}
User contributions licensed under CC BY-SA 3.0